Stochastic Rank Aggregation

نویسندگان

  • Shuzi Niu
  • Yanyan Lan
  • Jiafeng Guo
  • Xueqi Cheng
چکیده

This paper addresses the problem of rank aggregation, which aims to find a consensus ranking among multiple ranking inputs. Traditional rank aggregation methods are deterministic, and can be categorized into explicit and implicit methods depending on whether rank information is explicitly or implicitly utilized. Surprisingly, experimental results on real data sets show that explicit rank aggregation methods would not work as well as implicit methods, although rank information is critical for the task. Our analysis indicates that the major reason might be the unreliable rank information from incomplete ranking inputs. To solve this problem, we propose to incorporate uncertainty into rank aggregation and tackle the problem in both unsupervised and supervised scenario. We call this novel framework stochastic rank aggregation (St.Agg for short). Specifically, we introduce a prior distribution on ranks, and transform the ranking functions or objectives in traditional explicit methods to their expectations over this distribution. Our experiments on benchmark data sets show that the proposed St.Agg outperforms the baselines in both unsupervised and supervised scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Submodular Rank Aggregation on Score-based Permutations

Unsupervised rank aggregation on score-based permutations, which is widely used in many applications, has not been deeply explored yet. This work studies the use of submodular optimization for rank aggregation on score-based permutations in an unsupervised way. Specifically, we propose an unsupervised approach based on the Lovasz Bregman divergence for setting up linear structured convex and ne...

متن کامل

CSWA: Aggregation-Free Spatial-Temporal Community Sensing

In this paper, we present a novel community sensing paradigm CSWA –Community Sensing Without Sensor/Location Data Aggregation. CSWA is designed to obtain the environment information (e.g., air pollution or temperature) in each subarea of the target area, without aggregating sensor and location data collected by community members. CSWA operates on top of a secured peer-to-peer network over the c...

متن کامل

Study on Meta-Learning Approach Application in Rank Aggregation Algorithm Selection

Rank aggregation is an important task in many areas, nevertheless, none of rank aggregation algorithms is best for all cases. The main goal of this work is to develop a method, which for a given rank list finds the best rank aggregation algorithm with respect to a certain optimality criterion. Two approaches based on meta-feature description are proposed and one of them shows promising results.

متن کامل

Multivariate Spearman’s rho for rank aggregation

We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Our main contribution is the derivation of a nonparametric estimator for rank aggregation based on multivariate extensions of Spearman’s ρ, which measures correlation between a set of ranked lists. Multivariate Spearman’s ρ is defined using copulas, and we show that the geometric mean of ...

متن کامل

Stochastic Congestion Management Considering Power System Uncertainties

Congestion management in electricity markets is traditionally done using deterministic values of power system parameters considering a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties. The uncertainty sources that are modeled in the proposed stochastic framework consist of contingencie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1309.6852  شماره 

صفحات  -

تاریخ انتشار 2013